
Parallelization of an Electromagnetics Code

Donghoon Chen� Victor Eijkhouty Paul Sotirelisz

May 6, 1999

Abstract

We describe the parallelization process of an electromagnetics (EM)
code used for designing and characterising complex three-dimensional
monolithic microwave integrated circuits (MMIC). The code constructs
a complex symmetric system from element matrix data, and solves the
system by a conjugate gradient method. This paper addresses the obsta-
cles to parallelization, and the solutions found.

1 Introduction

High-frequency radar systems for communication, detection and surveillance
incorporate MMIC modules which are characterized by high density and sub-
stantial geometrical complexity. In most cases these modules are packaged for
electrical and/or environmental protection and the resulting 3D structures ex-
hibit a considerable complexity that impedes design and inuences electrical
performance due to unwanted parasitics. The design of these complex three-
dimensional monolithic circuit (MMIC modules) with hundreds of vias and lines
interconnecting a large number of active and passive circuit components to a
rather large number of radiating elements, has been a problem of critical im-
portance to DoD. The design and characterization of these circuits requires
numerical approaches which can fully characterize the excited electromagnetic
�elds.

We have concentrated on the development of codes with capability of accel-
erating numerical computations in electromagnetic problems with large compu-
tational domains and/or computationally intensive tasks.

Among the existing full-wave numerical techniques, the �nite elementmethod
(FEM) has demonstrated superiority in solving general high-frequency electro-
magnetic problems, especially for complex three dimensional geometries. The
FEM solves Maxwell's Equations in the frequency domain using large computa-
tional volumes and intensive numerical calculations which have to be performed
repeatedly at all frequency points of interest. In addition to these problems,

�Radiation Lab.,EECS, University of Michigan, Ann Arbor, MI 48109
yDepartment of Computer Science, University of Tennessee, Knoxville, TN 37996
zASC/HP Wright-Patterson AFB, OH 45433-7802

1

the numerical solution of Maxwell's Equations results in huge sparse matrices
which further limit applicability of the technique. With regards to substantially
increasing the computational e�ciency of these techniques, we concentrate to
improve FEM through code parallelization strategy.

This work leverages existing synergism between DOD and the University
of Michigan scientists and engineers conducting large-scale simulations of ad-
vanced software systems. In addition, cross-platform portability and software
reusability will be emphasized using the Message-Passing Interface (MPI) stan-
dard.

The development of scalable software is based on the FEM techniques to
sustain the high accuracy capability while, at the same time, solve complex
planar circuits including their packages in very short times, allowing for real
time simulations. Such softwares can eventually lead to real time design and
optimization.

2 Code structure

The code consists of three parts.

1. Element data is read in,

2. the matrix is formed,

3. the linear system is solved.

The element data is generated by a separate programwhich models/discretizes
the computational domain with tetrahedra elements. The element data repre-
sent the discretized computation domain with element cells using the position
of element in the domain, nodes/edges of element, and edge/node connectivity
of each element.

Our aim in parallelizing the code was to make it scalable: increasing both
problem size and number of processors such that the data per processor stays
constant, the e�ciency should stay constant. In particular, processors should
not have data proportional to the total problem size, or operations that take
time proportional to the global work.

The second and third parts of the program are conceptually largely paral-
lelizable, though there are several obstacles to automatic parallelization.

� There are few instances of loops that are trivially parallelizable. Most of
them are the vector operations in the conjugate gradient method.

� The matrix-vector product in the conjugate gradient method has paral-
lelizable writes, but the reads are only parallel in a shared-memory sense;
they need considerable e�ort in the distributed case.

� The matrix generation loop has conicting reads and write, as wel as a
global counter, that are in the way of easy parallelization.

2

An OpenMP-like, directive based, approach would thus have limited success on
this code. Especially in the third point substantial rewriting is needed.

Between the matrix creation and its system solution there is a further inter-
esting point: the creation can be made parallel over the �nite elements of the
domain, where as the system solution can be made parallel over the edges in the
domain. These two types of parallelism can not be mapped one-to-one; there are
more elements than edges because of the boundary, and edges typically belong
to more than one element. Thus, if we make independent parallel distributions
of the elements and edges, elements belonging to di�erent processors may be
adding to the same variable, read, matrix row.

3 Problem distribution strategy

In the current parallel code we use a simple partitioning scheme for both the
matrix generation and iterative problem solution. Let the number of elements
be E, the number of edges N , and the number of processors P , then we create
split points

0 = e0 < e1 < � � � < eP = E; 0 = n0 < n1 < � � � < nP = N

and we assign to processor p the ranges Ep = fep; : : : ; ep+1 � 1g and Np =
fnp; : : : ; np+1 � 1g. Thus, processor p will store the vector element and the
matrix rows with indices in Np.

The work is then distributed as follows:

� Processor p reads the element data for elements in Ep;

� Processor p writes those vector components with indices in Np.

The above-mentioned mismatch between elements and edges can be de-
scribed as follows.

� For each processor there is a set N 0

p of the edges that adjoin the elements
in Ep. Processor p has the data to construct, partially, the matrix ele-
ments aij with i 2 N 0

p.

� Since N 0

p 6= Np, processor p has to send those elements in N 0

p�Np to their
rightful owners;

� Conversely, every processor has to expect elements of its own part of
matrix being sent by some of the other processors.

This last communication stage can be described as a 'sparse all-to-all' stage. We
implement this by �rst having a true all-to-all where it is established which pro-
cessors have data, and how much, for which other processors. Every processor
then posts sends and receives for precisely the necessary communications.

3

4 Matrix generation from element data

Creating the matrix from the element data is done in a loop over the elements.
Its basic structure is as follows.

C loop over all elements

DO I=1,NEL

...

C get element data in TAB

CALL CRUX(...)

...

C loop over edges of element

DO J=1,6

IF(<certain condition>) THEN

NOSEG = TAB(J,3)

IF(<this edge has not been encountered>) THEN

EDST(NOSEG,1) = NPTRX

EDST(NOSEG,2) = NOSEG

NPTRX = NPTRX + 1

ENDIF

...

C fill in matrix elements

DO J = 1,6

DO K = 1,6

IF(<some condition>) THEN

C calculate i & j location in the matrix

IM = EDST(1,TAB(J,3))

IN = EDST(1,TAB(K,3))

It is clear that the counter NPTRX is a serious impediment to parallelization.
We make this loop parallel (but not scalably parallel) as follows.

� First of all we duplicate the loop, and let the �rst instance create the EDST
array, while the second creates the matrix.

� We let the loop over the elements range only over local elements, but write
into an array of global size (which can be derived from the element data,
using one reduction).

allocated(EDST0(global_max))

...

do i=my_first_elt,my_last_elt

� We replace the call to CRUX, which performs some computation, in the
�rst instance of the elements loop by one that only retrieves numbering
data

CALL CRUX0(I,tab,GNN,edna,my_first_elt,local_elt_size)

4

and we write into EDST0 as before.

� After the element loop we perform a reduction to �nd all places in EDST0

that were written

call MPI_allreduce(edst0,edst,

> 2*global_max,MPI_INTEGER,MPI_SUM,comm,ierror)

� and each processors now constructs the correct numbering:

nptrx = 0

do i=1,global_max

if (edst(2,i).ne.0) then

nptrx = nptrx+1

edst(1,i) = nptrx ; edst(2,i) = i

end if

end do

global_size = nptrx

While this solution is fully parallel in the sense that processors never wait for
one another outside the reduction operations, in two places it is not scalable:

� Since the arrays EDST0, EDST are allocated of global size, the total storage
for the problem goes up proportional to NP .

� In the �nal loop, each processor performs work proportional to the global
size; hence, the run time for this part of the code is constant in the number
of processors.

It would have been possible to make this part of the code scalable, but not
without incurring necessary changes in the program that generates the data.
Since this piece of code is of minor importance, we decided against this.

Filling in the matrix elements has to be made local too. After calculating
the location in the matrix, we write the element either in the local matrix, or
in a temporary one:

DO J = 1,6

DO K = 1,6

IF (<some condition>) THEN

IM = EDST(1,TAB(J,3))

IN = EDST(1,TAB(K,3))

C Write the matrix element into the appropriate matrix

if (im.lt.my_first_row.or.im.gt.my_last_row) then

C write into ASQ, INQ1, INQ2

...

else

C write into ASQ_t, INQ1_t, INQ2_t

...

5

Although we have made a very simple split of the matrix rows over the
processors, it is reasonable to expect that elements assigned to one processor
will mostly generate the rows assigned to that processor. For the remaining
rows, stored in ASQ t et cetera, we need an all-to-all communication stage.

� By inspection of INQ1 t we decide which o�-processor rows have been
partially generated, and to what processors they belong.

� With an MPI Allgather call we derive which processors are going to re-
ceive rows from which.

� The rows are exchanged, and the incoming data is merged in with the
already existing local matrix.

� The resulting local matrix is then analysed to determine what variables
on and o� processor will be needed for a matrix-vector product; see below.
This communication pattern will be saved, since it also determines how
data is going to be sent every time a matrix-vector product is performed.

In the sparse all-to-all of the matrix row exchange there is a considerable
amount of data being sent through the network. Apart from the network load,
this means that, if we would use non-blocking sends and receives, processors
have to allocate a considerable amount of bu�er space. To reduce this, we
use blocking sends and receives. Since we are dealing with a sparse all-to-all,
some amount of sophistication is needed. We orchestrate the communication as
follows:

do iproc=0,me-1

< receive from processor iproc >

end do

do iproc=me+1,nprocs-1

< send to processor iproc >

end do

do iproc=nprocs-1,me+1,-1

< receive from processor iproc >

end do

do iproc=0,me-1

< send to processor iproc >

end do

The basic idea here is to perform �rst all sends to higher numbered processors,
then all sends to lower numbered processors. This scheme is dead-lock free:
processor 0 has no receives in the �rst loop and will start immediately by sending
in the second loop, and correspondingly the other processors start by receiving
from it; the last processor has no receives in the third loop, so it starts sending
in the fourth loop immediately, and other processors, because of the downward
numbering of the third loop, start by receiving from it.

6

5 Parallel conjugate gradients

Conjugate gradient iterative methods have following components:

� Vector updates; these are trivially parallel.

� Inner products. These involve a global accumulation and distribution step;
thus, they are incur a certain communication time.

� Matrix vector product. Under the normal `owner computes' rule, these
have parallelizable writes, but the reads are a problem.

� Preconditioner application; in the current code this is a variant of a Jacobi
preconditioner, so it is trivially parallel.

5.1 Parallel matrix vector product

For the analysis of a parallel matrix vector product y = Ax we consider the line

yi =
X

j

aijxj:

Because of our partitioning scheme, for j 2 Np, both yi and all aij are present
on processor p. The problem is then with those j-values for which aij 6= 0,
and j 62 Np; these values have to be sent from the appropriate processors.

Practically, we have to change the matrix storage slightly. The original
matrix was stored in a variant of compressed row storage as

complex*16 ASQ(imax,n)

integer INQ1(imax,n),INQ2(n)

where the arrays are arranged such that

aINQ1(i;j);j = ASQ(i; j) if i < INQ2(j)

We amend the storage scheme by adding an array INQ2b(n) such that for
all j 2 Np:

1 � i � INQ2(j)) i 2 Np; INQ2(j) + 1 � i � INQ2b(j)) i 62 Np

This entails a permutation of the elements in each matrix row.
Additionally, we renumber the permuted elements

for 1 � i � INQ2(j) : INQ1(i; j) INQ1(i; j) � np + 1

so that the indices refer to the numbering of the local array instead of the global
numbering.

A similar numbering is performed on INQ2b, so that the matrix elements
address a second array of right hand side elements. Speci�cally, for the matrix
elements that refer to o�-processor xj-values, we allocate an array of length

op = #faij: j 2 Np and i 62 Npg;

7

and we renumber the matrix elements with INQ2(j)+1 � i � INQ2b(j) to index
this array.

In order to overlap communication and computation, we arrange the matrix-
vector product as follows:

1. The processor posts (MPI ISend and IRecv calls) communication requests
for o�-processor values of xj.

2. The local part of the matrix-vector product is performed.

3. The processor waits for all communication to be �nalised.

4. The remaining part of the product is evaluated.

Naturally, each processor keeps lists of precisely the other processors it commu-
nicates with.

6 Timing results

In tables 1 and 2 we report execution times in seconds for the three parts of the
program:

1. input from �le of the element data,

2. construction of the distributed matrix, and

3. solution of the linear system.

We tested two data sets. The small data set has 5460 elements and the matrix
is of size 5712; the large data set has 113,520 elements and the matrix is of size
129,163.

np= 1 2 4 6 8
in 2.25 2.1 1.82 1.5 1.5
mat 13.7 4.2 1.7 1.1 .8
solve 153 79.4 39.5 27.5 22.3

Table 1: Execution time for distributed input, matrix construction, and system
solution on networked Sparc stations for a small data set.

np= 1 2 4 6 8
in 51.7 48.3 46.2 37.0 36.6
mat 2494 700 325 203 121
solve 22.5k 12.5k 6374 4148 3028

Table 2: Execution time for distributed input, matrix construction, and system
solution on networked Sparc stations for a large data set.

8

We see an almost perfectly linear speed up of the solution process and the
matrix construction. The input phase shows some speed-up, but not much,
since each processor is having to read the full input �les.

The matrix construction shows super-linear speedup, which levels o� around
4 processors on the small problem, but continues on the large problem. This is
caused by the irregular data access in this phase; for larger numbers of processors
the problem will increasingly �t in cache, giving better performance.

7 Acknowledgements

This research was partially funded by the DoD High Performance Computing
Modernization Program, ASC Major Shared Resource Center, through Pro-
gramming Environment and Training (PET). Views, opinions, and/or �ndings
contained in this report are those of the author(s) and should not be construed
as an o�cial Department of Defense position, policy or decision unless so des-
ignated by other o�cial documentation.

List of Tables

1 Execution time for distributed input, matrix construction, and
system solution on networked Sparc stations for a small data set. 8

2 Execution time for distributed input, matrix construction, and
system solution on networked Sparc stations for a large data set. 8

9

